Scattering of light by bispheres

with touching and separated components

Michael I. Mishchenko, Daniel W. Mackowski, and Larry D. Travis

We use the T-matrix method as described by Mishchenko and Mackowski [Opt. Lett. 19, 1604 (1994)| to
compute light scattering by bispheres in fixed and random orientations extensively. For all our
computations the index of refraction is fixed at a value 1.5 + 0.005i, which is close to the refractive index
of mineral tropospheric aerosols and was used in previous extensive studies of light scattering by
spheroids and Chebyshev particles. For monodisperse bispheres with touching components in a fixed
orientation, electromagnetic interactions between the constituent spheres result in a considerably more
complicated interference structure in the scattering patterns than that for single monodisperse
spheres. However, this increased structure is largely washed out by orientational averaging and results
in scattering patterns for randomly oriented bispheres that are close to those for single spheres with size
equal to the size of the bisphere components. Unlike other nonspherical particles such as cubes and
spheroids, randomly oriented bispheres do not exhibit pronounced enhancement of side scattering and
reduction of backscattering and positive polarization at side-scattering angles. Thus the dominant
feature of light scattering by randomly oriented bispheres is the single scattering from the component
spheres, whereas the effects of cooperative scattering and concavity of the bisphere shape play a minor
role. The only distinct manifestations of nonsphericity and cooperative scattering effects for randomly
oriented bispheres are the departure of the ratio F,,/Fy; of the elements of the scattering matrix from
unity, the inequality of the ratios Fs3/Fq1 and F44,,/'F11, and nonzero linear and circular backscattering
depolarization ratios. Our computations for randomly oriented bispheres with separated wavelength-
sized components show that the component spheres become essentially independent scatterers at as

small a distance between their centers as 4 times their radii.
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1. Introduction

The scattering of light by nonspherical particles with
sizes comparable to the wavelength of the incident
light is a problem of significant importance to many
areas of science such as atmospheric and aerosol
optics, chemistry, biology, and astrophysics. In the
resonance region of particle size parameters, where
the Rayleigh and geometric-optics approximations
are inapplicable, numerical methods for computing
nonspherical scattering must be based on directly
solving Maxwell's equations. The majority of compu-
tational data on light scattering by resonance non-
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Light scattering, nonspherical particles, cooperative effects, depolarization, multiple

spherical particles published so far have been ob-
tained by the use of the T-matrix approach.?
However, all those data pertain to convex or mildly
concave single nonspherical particles such as spher-
o0ids,>5 finite cylinders,® and Chebyshev particles,3”
whereas it has been suggested that pronounced con-
cavity of the particle shape or cooperative effects in
composite, aggregated particles, or both, might have a
strong influence on light scattering.37-13 Therefore
it is the aim of this paper to study light-scattering
properties of the simplest aggregated particles—
bispheres (two-sphere clusters—extensively. Un-
like spheroids and finite cylinders, bispheres are
composite particles and, in the case of touching
components, have distinctly concave shapes. On the
other hand, such particles are still simple enough to
allow efficient numerical computations. These two
factors make bispheres well suited for an investiga-
tion of the role of cooperative effects and concavity in
light scattering.
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The scattering of light by bispheres has been the
subject of several publications (see, e.g., Refs. 9, 12,
and 14 and references therein). Because of computa-
tional difficulties, essentially all published numerical
results pertain to bispheres in a fixed orientation with
respect to the incident beam. However, in nature
small particles are usually distributed over a range of
orientations rather than being perfectly aligned.
Therefore computations for randomly oriented bi-
spheres seem to be more relevant in application to
natural particle ensembles and thus more suitable for
deriving conclusions about the effects of particle
shape on light scattering.

In a recent paper, we have developed an efficient
method for rigorously computing the scattering of
light by randomly oriented bispheres with sizes com-
parable to and larger than the wavelength.’> The
efficiency of our method is the result of combining the
power of the superposition approach in treating light
scattering by composite particles®9141617 and the
analyticity of the T-matrix formulation in application
to randomly oriented nonspherical scatterers.’® The
main idea of the method is to use the superposition
approach to calculate the T matrix of a bisphere in the
natural coordinate system with the z axis connecting
the centers of the component spheres and then to use
this T matrix in an analytical procedure to compute
the optical cross sections and the elements of the
scattering matrix for randomly oriented bispheres
directly. Although Ref. 15 presents only a sketch of
our computational method, all intermediate steps of
the derivation can easily be restored with Refs. 14, 17,
and 18. Those papers contain not only the complete
compendium of all necessary formulas, but also the
detailed discussion of numerical aspects, which facili-
tates the development of an efficient computer code.
As noted in Refs. 15 and 19, different parts of the code
and the whole code have been extensively tested
versus independent numerical data?®-?2 and general
equalities and inequalities that must be satisfied by
the elements of the Stokes-scattering matrix,>23-25 as
well as versus the laboratory measurements of Bot-
tiger et al.?6 for randomly oriented micrometer-sized
latex bispheres. The excellent quantitative agree-
ment found in all cases allows us to believe that our
code produces accurate results. Accordingly, the ex-
pected absolute accuracy of the computations of the
elements of the scattering matrix reported below is
better than 0.001 for all size parameters considered.

In this paper we apply our method to an extensive
study of light scattering by randomly oriented bi-
spheres. Specifically, we compute the elements of
the scattering matrix and the total optical cross
sections for randomly oriented bispheres with touch-
ing and separated components and compare these
data with analogous computations for single spheres
and bispheres in a fixed orientation. This compari-
son is then used to derive conclusions about the
effects of aggregation and concavity on light scatter-

ing.
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2. Bispheres with Touching Components in Fixed and
Random Orientations

For all our computations we fixed the index of refrac-
tion at 1.5 + 0.005i based on the following rationale.
First, this index of refraction is close to that of
mineral tropospheric aerosols in the Earth atmo-
sphere at visible wavelengths?’ and is, potentially, of
practical interest. Second, almost the same refrac-
tive index (1.5 + 0.02i) was used in previous detailed
studies of light scattering by randomly oriented Che-
byshev particles®? and spheroids.23> Because in this
paper we extensively examine light scattering by a
new class of nonspherical particles, the use of essen-
tially the same refractive index facilitates relevant
intercomparison of light-scattering properties of par-
ticles of different shape. The only purpose of slightly
reducing the imaginary part of the refractive index
from 0.02 down to 0.005 is to make the cooperative
scattering effects for bispheres somewhat more pro-
nounced.

The transformation of the Stokes vector of the
incident light Iinc = {inc Qinc inc vincl jnto the
Stokes vector of the scattered light Isca = [|sca Qsca,
Usea vseal ypon single scattering by a nonspherical
particle in an arbitrary orientation is described by the
(4 X 4) Mueller matrix Z as follows (Sec. 2.5 of Ref. 23):

sca 1 inc
152 = 2 ZIo™, (1)

where O is the scattering angle (i.e., the angle be-
tween the incident and the scattered beams) and R is
the distance between the scattering particle and the
observation point. In Eg. (1), we assume that the
Stokes vectors 1in¢ and 152 are specified with respect
to the scattering plane (i.e., the plane through the
incident and the scattered beams). In general, all 16
elements of the Mueller scattering matrix are nonzero
and depend not only on the scattering angle, but also
on the orientation of the particle with respect to the
incident and the scattered beams.

For randomly oriented particles with a plane of
symmetry (such as bispheres), it is more common to
use the so-called normalized (or Stokes) scattering
matrix F given by?28

41
Fi6) = =—20), (2)

where Cs, is the scattering cross section and the (1, 1)
element (i.e., phase function) satisfies the normaliza-
tion condition

1
4 ),

Owing to particle symmetry and random orientation,
the normalized scattering matrix has the well-known
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so that only eight elements of F are nonzero and only
six of them are independent.

It is well known23282% that typical features of
scattering patterns for monodisperse spherical par-
ticles are so-called interference structure and high-
frequency ripple, which result in strong oscillations of
the optical cross sections and the elements of the
scattering matrix with changing size parameter or
scattering angle. Examples are given in figure 8 of
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Fig.1. Continues.

Hansen and Travis?® for the scattering cross section
and figures 19 of Ref. 28 and figure 2 of Ref. 4 for the
degree of linear polarization. Figure 1(a) shows the
degree of linear polarization for scattering of unpolar-
ized incident light (i.e., the ratio —F /Fy of the
elements of the Stokes-scattering matrix) for monodis-
perse spherical particles as a function of particle-size
parameter and scattering angle. It can indeed be
seen that the polarization pattern is a field of sharp
local maxima and minima resulting from interference
of light diffracted and reflected or transmitted by the
particle.?®

Unlike single spheres, bispheres are nonspherical
particles, and the elements of the bisphere scattering
matrix depend not only on the scattering angle, but
also on the orientation of the particle with respect to
the incident and the scattered beams. Therefore we
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must expect that the interference structure for bi-
spheres in a fixed orientation has an additional
component that is due to the electromagnetic interac-
tion between the constituent spheres, depends on the
bisphere orientation, and is superposed on the single-
sphere polarization pattern. Figures 1(b) and 1(c)
show the degree of linear polarization (defined in this
case as the ratio —221/211 of the elements of the
Mueller-scattering matrix) as a function of the scatter-
ing angle and the constituent-sphere size parameter
for two orientations of the bisphere axis (i.e., the line
connecting sphere centers) with respect to the inci-
dent beam. In Fig. 1(b) the bisphere axis is perpen-
dicular to the direction of light incidence and the
scattering plane is defined as the plane through the
incident beam and the bisphere axis and in Fig. 1(c)
the bisphere axis is parallel to the incident beam and
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the scattering plane is an arbitrary plane through the
incident beam. These images show that the bi-
sphere polarization is indeed strongly dependent on
the particle orientation and reveals much more com-
plicated interference structure than the single-sphere
polarization [cf. Fig. 1(a)l. In particular, the lack of
axial symmetry for the light-scattering geometry in
Fig. 1(b) makes polarization nonzero at 0 and, more
noticeably, at 180° scattering angles. Also, the num-
ber of local maxima and minima has sharply increased.
This means that in addition to the single-sphere
interference structure we also have a component due
to the cooperative scattering of light from constituent
spheres. We should note that resolving the interfer-
ence structure in Figs. 1(b) and 1(c) required size-
parameter and scattering-angle step sizes of 0.05 and
0.3°, respectively.
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Fig. 1. (a)Ratio —Fy /Fy; of the elements of the scattering matrix as a function of scattering angle and size parameter for monodisperse
single spheres. (b) Ratio —Z,1/Z1; of the elements of the Mueller matrix as a function of scattering angle and constituent-sphere size
parameter for monodisperse bispheres with touching components and axes perpendicular to the direction of light incidence. (c) Ratio
—Z2/Z1; of the elements of the Mueller matrix as a function of scattering angle and constituent-sphere size parameter for monodisperse
bispheres with touching components and axes parallel to the direction of light incidence. (d) Ratio —F21/F11 of the elements of the
scattering matrix as a function of scattering angle and size parameter for monodisperse randomly oriented bispheres with touching
components. The vertical axis shows constituent-sphere size parameters. (e) Scattering phase function Fy; as a function of scattering
angle and size parameter for monodisperse single spheres. (f) As in (e) but for monodisperse randomly oriented bispheres with touching
components. The vertical axis shows constituent-sphere size parameters. (g) Ratio F33/F11 of the elements of the scattering matrix as a
function of scattering angle and size parameter for monodisperse single spheres. (h) As in (g) but for monodisperse randomly oriented
bispheres with touching components. The vertical axis shows constituent-sphere size parameters. (i) Ratio F2,/F1; of the elements of the
scattering matrix as a function of scattering angle and constituent-sphere size parameter for monodisperse randomly oriented bispheres
with touching components. (j) Ratio Fs/F1; of the elements of the scattering matrix as a function of scattering angle and
constituent-sphere size parameter for monodisperse randomly oriented bispheres with touching components. (k) Ratio Fa,/Fy; of the
elements of the scattering matrix as a function of scattering angle and size parameter for monodisperse single spheres. () As in (k) but for
monodisperse randomly oriented bispheres with touching components. The vertical axis shows constituent-sphere size parameters.

Figure 1(d) shows the degree of linear polarization spheres|Fig. 1(a)l. The only unequivocal difference is
—F21/F11 computed for bispheres in random orienta- that the amplitudes of local maxima and minima are
tion. Somewhat unexpectedly, one can see a polariza- reduced, whereas the locations of the maxima and
tion pattern that is very similar to that of single minima and their numbers are exactly the same.
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This means that averaging over bisphere orientations
largely washes out the second component of the
interference structure and also makes the single-
sphere interference structure slightly less pronounced.

Figures 1(e) and 1(f) show the scattering phase
function [i.e., the (1, 1) element of the Stokes-scatter-
ing matrix| computed for single spheres and randomly
oriented bispheres, and Figs. 1(g-1(l) show the ratios
F22/F11; F33/F11, F44/F11, and F34/F11 of the elements
of the scattering matrix. Note that for single spheres
F22/F11 =1 and F44/F11 = F33/F11. Again we show
that the patterns of the scattering phase function and
of the ratios F33/F11, F44/F11, and F34/F11 for randomly
oriented bispheres are essentially smoothed versions
of those for single spheres. Specifically, the positions
of the local maxima and minima and their numbers
are exactly the same, although their amplitudes are
somewhat reduced. This effect is also demonstrated
in Figs. 2 and 3, in which the solid curves show
horizontal cross sections of Figs. 1(a), 1(d), 1(e), and 1(f)
corresponding to size parameters 5 and 15.

The only obvious indications of nonsphericity and
cooperative scattering for bispheres are the deviation
of the ratio Fa,/Fy; from unity, the deviation of the
ratios Fa3/Fy; and Fu,/Fy; from —1 at 180° scattering
angle, and the inequality of the ratios F33/F11 and
F44/F11. The inequality is especially noticeable at
backscattering angles. Two quantities that are usu-
ally considered sensitive indicators of particle non-
sphericity are the linear and the circular depolariza-
tion ratios defined as303!

_ Fll(lSOo) - F22(180°) (5)
L FL(180°) + F,,(180°)
F.,(180°) + F,,(180°

Sc _ 11 ) 44( ) . (6)

F11(180°) - F44(180°)
The linear depolarization ratio applies to the case of
fully linearly polarized incident light and is the ratio
of the cross-polarized component of the backscattered
signal relative to the copolarized component. The
circular depolarization ratio refers to the case of fully
circularly polarized incident beam and is the ratio of
the same-helicity component of the backscattered
intensity relative to the opposite-helicity component.
For spheres, 3, = 0 and 8c = 0. The depolarization
ratios for randomly oriented bispheres are shown in
Fig. 4. It can be seen that both §_ and &: can be
substantially greater than zero, especially the circu-
lar depolarization ratio. Both depolarization ratios
go to zero in the limit of zero size parameter and reach
maximum values at size parameters from approxi-
mately 16 to approximately 23. In the entire inter-
val of size parameters from 0 to 30 the circular
depolarization ratio is greater than the linear depolar-
ization ratio. This result is in full agreement with
the general inequality 8¢ = 25, which is a universal
characteristic of light scattering by randomly ori-
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Fig. 2. Phase function and degree of linear polarization for a
single sphere (thin solid curves), randomly oriented bispheres with
touching components (thick solid curves), and randomly oriented
bispheres with distance between sphere centers equal to 3 (dotted
curves) and 4 (dotted—dashed curves) times their radius. The size
parameter of the single sphere and the bisphere components is
equal to 5.

ented rotationally symmetric particles.3? Interesting-
ly, the size-parameter dependence of both ratios is
fully correlated: even though the ratio 3_/3¢ is not a
size-parameter-independent constant, local maxima
and minima for §_ occur at exactly the same size
parameters as those for 8c. This strongly suggests
that there is a unique relationship between the linear
and the circular depolarization ratios, as discussed in
Ref. 32.

Figures 5 and 6 show ratios of the total optical cross
sections, single-scattering albedo, and asymmetry
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times their radius (dotted curves]. The size parameter of the
single sphere and the bisphere components is equal to 15.

parameter of the phase function for randomly ori-
ented bispheres relative to those for single spheres
with size equal to the size of the bisphere components.
Interestingly, all these ratios are nearly constant at
size parameters exceeding 10. The ratio of the extinc-
tion cross sections shows both high-frequency ripple
and low-frequency oscillations. However, the ampli-
tude of the oscillations is small, and the entire curve
for size parameters exceeding 6 is close to 1.8-1.85.
The ratio of the orientationally averaged geometric
cross section of a bisphere and the geometric cross-
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Fig. 4. Linear (solid curve)and circular (dotted curve) backscatter-
ing depolarization ratios versus constituent-sphere size parameter
for randomly oriented monodisperse bispheres with touching
components.

section of a sphere with size equal to the size of the
bisphere components is equal to 1.849. Therefore, in
the geometric-optics limit the ratio of the bisphere
and single-sphere extinction cross sections must be
equal to this value of 1.849. The extinction curve in
Fig. 5 shows a distinct trend toward that limit with
increasing size parameter. However, itis interesting
that the extinction ratio is close to the geometric-
optics limit even for as small a size parameter as 7.

Despite a small-amplitude high-frequency ripple,
the ratio of the absorption cross sections is close to 2
at the entire range of size parameters, indicating that
absorption cross section is nearly proportional to the
particle volume. However, if the imaginary part of
the refractive index is nonzero, then in the limit of
infinite size parameter all light refracted into the
particle is absorbed and does not escape. Therefore
we should expect that the ratio of the bisphere and
single-sphere absorption cross sections should de-
crease with increasing size parameter and approach
the geometric cross-section ratio of 1.849. This trend
can indeed be seen in Fig. 5.

The single-scattering albedo ratio is especially size
parameter independent for size parameters larger
than 1 and varies within a very narrow range of 1 +
0.02 (Fig. 6. The asymmetry parameter ratio is also
close to 1. However, all ratios but the absorption
cross-section ratio rise substantially as the size param-
eter becomes less than 2, which demonstrates the
increasing influence of cooperative scattering effects
for smaller particles.
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3. Polydisperse Randomly Oriented Bispheres with
Touching Components

In Section 2 we discussed light-scattering properties
of monodisperse bispheres. It is well known that the
main effect of averaging light-scattering characteris-
tics over a particle-size distribution is to wash out the
interference structure and ripple inherent in light-
scattering patterns of monodisperse particles.28
This effect facilitates comparison of light-scattering
properties of particles with different shapes and is
demonstrated in Fig. 7, in which the dotted and the
solid curves show the elements of the Stokes-
scattering matrix for a power-law size distribution of
spheres and randomly oriented bispheres, respec-
tively, computed at a wavelength A = 0.6283 pm.
Table 1 shows the corresponding total optical cross
sections, single-scattering albedos, asymmetry param-
eters, and depolarization ratios. The power-law dis-
tribution is given by n(r) « r=3, r € [Fmin, Mmax, With
minimum and maximum radii chosen such that the
effective variance of the distribution v equals 0.2
and the effective radius re; equals 1 um. The effec-
tive radius re¢; and effective variance v are defined
by equations (2.53) and (2.54) of Ref. 28 and have been
shown in Refs. 5 and 28 to be the main characteristics
of any physically plausible size distribution of spheri-
cal and nonspherical particles as far as light-scatter-
ing properties of particle polydispersions are con-
cerned.
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Figure 7 shows that the angular dependence of the
elements of the scattering matrix for bispheres is
similar to that for single spheres with effective size
parameter equal to the effective bisphere monomer
size parameter. The ratios —F,;/Fy; and Fas/Fy; of
the elements of the scattering matrix for bispheres
and single spheres are especially close. The phase
functions are also close to one another except at
scattering angles less than 10°, where the bisphere
intensity is nearly twice that for single spheres
because of constructive interference of light singly
scattered by bisphere components in the forward
direction. The single-scattering albedos and asym-
metry parameters are essentially identical, the bi-
sphere absorption cross section is roughly equal to
twice the single-sphere absorption cross section, and
the ratio of the extinction cross sections is 1.777,
which is slightly less than the geometric-optics limit
of 1.849. Again, manifestations of particle nonsphe-
ricity for bispheres are nonzero backscattering depo-
larization ratios, differences in the ratios F33/F11 and
F44/F11, and the departure of the ratio Fzz/Fll from
unity.

For comparison, the dotted—dashed curves in Fig. 7
show the elements of the scattering matrix for an
equivalent power-law distribution of randomly ori-
ented prolate spheroids with an aspect ratio of 2 and
the same refractive index 1.5 + 0.005i. The effective
variance of the size distribution is ve = 0.2, and the
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constituent-sphere radius re = 1 um (solid curves) and polydisperse single spheres with the same effective radius (dotted curves). The
effective variance of the size distribution is v = 0.2 and the wavelength is 0.6283 um. For comparison, dotted—dashed lines were
computed for an equivalent power-law distribution of randomly oriented prolate spheroids with aspect ratio 2, effective variance veg = 0.2,

and effective equal-volume-sphere radius reg = 1 pm.

effective equal-volume-sphere radius is reg = 1 pm.
It is seen that, unlike the case for bispheres, the
spheroidal phase function exhibits an enhanced side
scattering and suppressed backscattering, and the
degree of linear polarization is positive at scattering
angles around 120°. Based on laboratory measure-
ments for irregular particles®® and nearly cubically
shaped salt grains®* and on theoretical computations
for spheroids,?3535 these features are usually consid-
ered characteristic attributes of nonspherical scatter-
ing. Spherical-nonspherical differences in the ra-

Table 1. Total Optical Cross Sections  C (in Square Micrometers ),
Single-Scattering Albedo  «», Asymmetry Parameter of the Phase Function
(cos ©), and Backscattering Depolarization Ratios for Polydisperse
Randomly Oriented Bispheres with Touching Components and Effective
Constituent-Sphere Radius  ret = 1 wm and Polydisperse Single Spheres
with the Same Effective Radius 2

Parameter Bisphere Single Sphere
Cext 8.245 4.641
Csca 7.474 4.247
Cabs 0.771 0.394
w 0.907 0.915
(cos ©) 0.724 0.716
3L 0.118 0
dc 0.268 0

aThe effective variance of the size distribution is v = 0.2, and
the wavelength is A = 0.6283 um.

tios FZZ/Fll, F33/F11, F44/F11, and F34/F11 are also
larger for spheres and spheroids than for spheres and
bispheres.

4. Monodisperse Randomly Oriented Bispheres with
Separated Components

So far, we have discussed light scattering by bispheres
with touching components. With increasing separa-
tion between constituent spheres the influence of
cooperative scattering should diminish and ulti-
mately vanish, except at exactly the forward-scatter-
ing direction. Our computations for bispheres with
increasing distance between sphere centers demon-
strate that this is indeed the case. As an example,
Figs. 2 and 3 show the phase function and the degree
of linear polarization for single monodisperse spheres
and for randomly oriented monodisperse bispheres
with touching and separated components. It can be
seen that for essentially all scattering angles the
curves for bispheres with separated components lie
between the curves for single spheres and bispheres
with touching components and are much closer to the
single-sphere curves. In fact, it is surprising that as
small a distance between the sphere centers as 4
times their radius makes the bisphere phase function
and linear polarization almost identical to those of a
single sphere, which means that the component
spheres have become essentially independent scatter-
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ers. The only exception is the direction of forward
scattering, where the interference of light scattered
by the bisphere components nearly doubles the phase
function as compared with that for a single sphere.

5. Discussion and Conclusions

We have demonstrated that the scattering pattern for
monodisperse bispheres with touching components in
a fixed orientation is more complicated than that for
single monodisperse spheres because of the addi-
tional component of electromagnetic interactions be-
tween the constituent spheres. However, averaging
over the uniform orientation distribution largely
washes this additional component out. The net ef-
fect of aggregation—shape concavity and random orien-
tation for bispheres appears to be a somewhat
smoothed single-sphere scattering pattern. Theonly
distinct manifestations of nonsphericity and coopera-
tive scattering effects for randomly oriented bi-
spheres are the departure of the ratio Fzz/Fll from
unity, the inequality of the ratios Fss/Fll and F44/F11,
and nonzero linear and circular backscattering depo-
larization ratios. On the other hand, despite their
overall asphericity, polydisperse randomly oriented
bispheres (Fig. 7) do not exhibit such characteristic
features of nonspherical scattering as a considerably
enhanced side scattering and suppressed backscatter-
ing as
well as positive polarization at side-scattering
angles.23533-35 Thus the dominant feature of the
bisphere scattering is the single scattering from the
component spheres, whereas the effects of cooperative
scattering and concavity play a minor role. More-
over, this role rapidly further diminishes with increas-
ing separation between bisphere components. As a
result, the component spheres become essentially
independent scatterers at as small a distance between
their centers as 4 times their radii.

To explain these results we note that the effects of
clustering will manifest themselves in scattering by
virtue of two mechanisms, namely, near-field interac-
tions and far-field-dependent scattering (i.e., interfer-
ence between the far-field-scattered amplitudes from
each sphere). For relatively larger size parameters
the effects of dependent scattering between the
spheres would be expected to largely cancel on orien-
tation averaging, except at exactly the forward-
scattering direction, where the interference of light
singly scattered by the bisphere components is con-
structive regardless of the bisphere orientation.
Indeed, preliminary calculations of pure dependent
scattering between the spheres (in which the spheres
are taken to be uncoupled in the near field, leading to
Tii = Alg;; in equation 7 of Ref. 15) indicate that this is
the case. The dominant effect of clustering is thus
likely the result of near-field interactions. However,
because large spheres scatter predominantly in the
forward direction, the coupling between the spheres
would have the greatest effect only for orientations in
which the cluster is near parallel with the incident
radiation direction. Since this specific orientation
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represents a relatively small fraction of all orienta-
tions, the effect of interactions will be significantly
reduced on orientation averaging. In accordance
with this explanation, we should expect a more pro-
nounced influence of cooperative scattering effects for
particles having sizes smaller than the wavelength
and thus scattering nearly isotropically. Indeed, this
increased influence can be clearly seen in Figs. 5 and
6 as a significant rise of the extinction and scattering
cross sections, the single-scattering albedo, and the
asymmetry parameter of the phase function as the
size parameter becomes smaller than 2.

Our results are in full agreement with the conclu-
sions of Bottiger et al.,?6 derived on the basis of
laboratory measurements of light scattering by ran-
domly oriented aggregates consisting of attached poly-
styrene spheres. They also noticed that the single-
particle Mie structure was clearly evident, albeit
somewhat less pronounced, in their measurements
for randomly oriented aggregated particles and that
the deviation of the ratio FZZ/FH from unity provided
the most unequivocable evidence for the nonspheric-
ity of the aggregates. Differences between the ratios
Fss/F11 and F44/F1; were also noticeable, especially at
backscattering angles.

Based on our results, we may anticipate that the
most important factor in light scattering by a few-
component cluster would be the shape of the compo-
nent particles. It should be mentioned in this regard
that ray-tracing computations of Macke3¢ for big,
randomly oriented ice crystal aggregates in the form
of bullet rosettes also demonstrate that the scattering
phase function for the aggregate is essentially identi-
cal to that for a single randomly oriented bullet.
This has led Macke to the conclusion that multiple
scattering between bullets in the aggregate plays no
significant role in the overall scattering from the
aggregate.
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Hulst for valuable comments on a preliminary version
of this paper and to N. T. Zakharova for help with
graphics. M. I. Mishchenko and L. D. Travis thank
J. E. Hansen and M. Sato for useful discussions and
acknowledge partial support from the NASA Office of
Mission to Planet Earth and the NASA Earth Observ-
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